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INTRODUCTION

The most coimnon approach to structural dynamics problems is to

discre tize the continuous struc ture in space , using, for example, the

finite element model. This leads to a set of ordinary differen’ial equa-

tions In time. Integration schemes or modal superposition are employed

to solve these equations.

In the presen t ef for t the governing par tial dif ferential equations

for struc tural members such as rods , plates, and shells are trans f ormed

into ordinary differential equations in space by discretizing the time

derivatives using a finite difference scheme. A mixed method for struc-

tural members, such as the transfer matrix method for beams or numerical

integrations for shells, is then applied to solve these ordinary dif f—

erential equations . These computations in space can be stabilized with the aid

of the field method or Riccati transformations.

The method developed in the present paper is called the continuous—

space discrete — time (CSDT) Riccati transfer matri’ method since only

the time variable is treated in discrete form and the Riccati transfer

matrix method [iJ is employed to eliminate the numerical instabilities

so often encountered [:2] in spatial calculations. As mentioned above,

this method differs from the commonly used direct integration method for

struc tural dynamics, in which the numerical integration is performed on

a sys tem of second order dif ferential equations resul ting from the ua~al

structural approximations of the spatial geometry of the members [:3].

The continuous—space discrete—time method has been used in analog

or hybr id computers for the solution of par tial dif ferential equations

[4, 5, 6, 7, 8 ]. The central difference formulation was used in discretizing

the time derivatives. Stability of the method in the direction of time
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has been studied for parabolic heat transfer equations [9] and two

methods, i.e. the method of decomposition [10] and the invariant

imbedding method (11,12], were developed to eliminate the instability

associated with the resulting boundary value problem for the ordinary

differential equations in space. Breed (13] used a form of the CSDT

approach for the transient analysis of rotating shafts. A central

difference time discretization was used in his formulation. However,

no effort was made to stablize the integration for the resulting spatial

boundary value problem.

Without such a stabilization, the applications are severely limited.

This paper extends the continuous—space discrete—time method to the

transient analysis of structural members. The Newmark generalized

acceleration formulation is used for time discretization. Advantages

of this formulation over the central difference formulation usually

adopted for the continuous—space discrete—time method will be

demonstrated.
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FORMULATION OF THE CONTINUOUS— SPACE DISCRETE—TIME
RICCATI TRANSFER MATRIX METHOD

In general, the partial differential equations of motion for

structural members can be expressed as

DW(x,t) ~~~ A~ (x) ~~W (x ,t) —F(x,t) (1)

where W(x ,t) is the N—dimensional column vector of dependent variables,

A~(x) is an N—square spatial matrix, D(x) is an N—square spatial matrix

linear differential operator and F(x,t) is the N—dimensional force vector.

The terms associated with A
1 

and A
2 are usually identified as the damping

and inertia terms respectively. If some form of finite difference

discretization is used to approximate the inertia and damping terms in

equation (1), then the partial differential equations can be transformed

into an ordinary differential equation with spatial derivatives only.

The linear multistep discretization is used for this purpose due to the

fact that most of the commonly used direct integration methods in

structural dynamics , for example, the central difference method [14],

the Houbolt method [l5], the Newmark method [16] and the stiffly stable

method [i7J, can be derived from the linear multistep formulation. This

formulation can be written as

p. p
E ~ W —~~t Z 8 W (2)i n+1—i i~O I n+1—i

p p
Z y W — A t 2 T 

~5 
W (3)

10 I n+1—i i~O i n+l—i

where dot notaøion is used to represent time derivatives, 
~~~~

‘ 
~~~~ 

and

are coefficients, At is the time step and the subscript n+l—i denotes

the time at (n+l—i)At with n’~O, 1, —— — . Rearrange equations (2) and (3)

in the form

11.4



W +i 
- 

B 0At W +i + P (4)

i~ —~~~~
° w (5)

n+l 
~ 

n+l
0

where 

~: ~~~~ 
~~ :1~~

+1_

~ 
~~~i~i 

81
tJ~~1_1 (6)

6
0
At2 i i i n+1—i 6o i—i ~ ii+1—i (7)

The functions P~ and Q involve variables at previous times only and

hence can be considered as the historical part in the formulation.

Substituting equations (4) and (5) into the governing equations of

motion (1) at time (n+l)At , we have
A
r
cs A

2
y

DW~~1 
~~~~~~~ 

+ 
6 A t 2~~~

+l + A1P + A2Q~ — F
~~ l (8)

or DW +l — 
~~n+1 

— R (9)

____ 

A
2’1’where K — + (10)

A
1

P + A
2Q 

- 

~n+1 (11)

Equation (9) is a differential equation with spatial derivatives only

and hence, the dynamic analysis of the structural members can be treated
at each time step (n—O ,l,——— ) as a static problem by considering R~ to

be a generalized external, force acting on the member.

In principle, many methods for solving the ordinary differential
equations such as the Runge—Kutta and predictor - corrector methods
(181 can be applied to solve equation (9) with the prescribed boundary

conditions. Here, the mixed method techniques such as the transfer

matrix method for beams are used. It would appear reasonable that

numerical integration could be employed for shells. Note that the form

of equation (9) is similar to the governing equation for a structural member
on an elastic f oundation with an equivalent elastic foundation modulus K
given by equation (10) . Also, in th. above formulation, At must be taken

fairly small in order to keep the time discretization error reasonably
small. However, a small value of At corresponds to a large value of
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elastic foundation modulus K. Normally with such a K one would expect to

encounter numerical difficulties when , for example , the usual transfer

matrix method is applied. Several techniques are available to overcome

such numerical difficulties [2J. One of the better methods is to use

the Riccati transformation or the Riccati transfer matrix method [1].

Consider the formulation of the Riccati transfer matrix method .

Let [u] denote the NxN general transfer matrix which transfers the

state variable Lw] from station i to station i+1 across segment i, at

time (n+l)E~t. Then

[wJ~~1 — [U]
~~

w]
~ 

+ [F]~ (12)

where F contains the loading terms which are evaluated from the general

loading function equation (11). Both W and F are Nxl matrices . Let the

transfer matrix be arranged and partitioned so that

1_i...] . r~’ ! ~i~1 r..~....1 + 1..Y~ 1 (‘3)L e ~~~ LU2 1 U22 i1 Le .j i L Fe

where f contains the N/2 state variables corresponding to the homogeneous

left hand boundary conditions and e contains the respective complementary

N/2 state variables.

A generalized Riccati transformation at station i Is given by

[fI r [S]~~e]~ + [PJ~ (14)

which relates half of the state variables to the remaining state variables

at station i. Using equations (13) and (14), it can be shown that a

general recurrence relationship could be obtained as [1]

~~~~~~~ 
[S]j+i[eJj+i +[pJ1÷1 

(15)

where — [u 11S + U12]~~U21S + U22J
’ (16)

— fTJ],],P + Ff ]j  — [S]~~1
[U21P + F’eh i 

(17)

Thus, the matrices Es] and [P] determine the state variables f from e
11.6
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at any station. Another matrix [T] , which transmits the state variables

e from station 1+1 to station I, can also be obtained from equations

(13) and (14) as [1]

[e]1 — (T]i+1(e]j+1 + (18)

where (TIj+i — tTJ21S + U 22 I~
1 (19)

~~ i+l 
— _ (Tl

j+i[U 21P + F ]1 (20)

To start the calculation, the subsiatrices of the transfer matrix
in equation (13) must be determined. The matrices (5], (P], [TI and

(Q] are calculated for each station while moving along the member from
left to right with th~’ boundary conditions [SI — (P]

0 
— 0. When the

last station m is reached, equation (14) gives

— (SI te] + (P] (21)

The N/2 known state variables at the right hand boundary are

substituted into the above relationship to determine the remaining

N/2 unknown state variables. Successive applications of equations

(18) at each station allows the calculation of N/2 state variables e
while moving from right tc left along the member. At any station ,
the remaining N/2 state variables f are determined from equation (15).

This completes the formulation for the continuous — space discrete —

time R.iccati transfer matrix method.

Due to the generality of the transfer matrix method, this method

can be used to solve structural members with variable cross section and
arbitrary boundary conditions. In cases when the transfer matrix has to

be evaluated numerically, this method can still be used with the same

proceIures as outlined above. For example, members with continuously

varying cross—sectional properties and those with more than four equations
of motion, i.e. N > 4 in equation (1), numerical, integration may be

required to evaluate the transfer matrix. The finite difference discretiza—

11.7
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tion equations (2) and (3) are used to transform the governing partial

differential equation into ordinary differential equations , and a numerical.

method such as the Runge—Kutta or predictor—corrector are applied to provide the

transfer matrix [U] in equation (13). Once the transfer matrix is obtained,

the Riccati transfer matrix method can be applied.

Concentrated occurrences can be treated the same way as in the Riccati

transfer matrix method (1] except for a dashpot or a concentrated mass whose

behavior depends on the velocity or acceleration at that point. Consider

a segment of beam containing a dashpot (Fig. 1). Let L and R denote the

sections just to the left and right of station i where the dashpot is placed.

The transfer matrix across the dashpot can be expressed by a point matrix

at time (n+1)At as

1 0 0 0 
~~~~ 

0 
-

— 

0 1 0 0 ~~~~ 
+ 

0 (22)

0 0 1 0 0

L

where- y, e, N and V are the displacement, slope, moment and shear force of

the beam respectively. When equation (4) is used, equation (22) can be

written in the form

0 0 0 0

o 0 1 0 0  8 0n+1 
— 

n+1 + (23)
0 0 1 0 0

V 0 1 Vn+1 8 A t  n+1 , n
— — R _O — — — ~ — —
The same procedure can be applied to the case where the solution is

needed to cross a concentrated mass. The transfer matrix across the mass

~ n be expr.ased by the point matrix

11.8
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1 0 0 0 
~~~~ 

-

~~

e 0 1 0 0 0  0n+1 
— 

11+1 
+ (24)

N 0 0  1 O H  0n+i n+1 2
v o o 0 1 v mi.J~~.1n+i n+i
- - R  — - - — , — -

If the approximation equation (5) is applied,equation (24) will be

in the form

~ 0 0 
~~~~

O 0 1 0 0  0 0n+1 
— + (25)

H 0 0  1 0 N 0n+i n-I-i

m’y ’p 
2
0 0 1 V

n+i mQ
— -R I5 0~~t _ _ L -

The Riccati transfer matrix method using the point matrices (23) and

(25) can be used to carry the solution across the dashpot and the

concentrated mass. Such in—span indeterminate conditions as moment

releases and rigid supports require special attention. The same is

true for prescribed time—varying displacements. Consider, for example,

the beam in Fig. 2 which has two successive prescribed time dependent dis-

placements 61,1 and ~~~~, 
applied at position x — a~_1 and a1. The unknown

force Wi i (t) is introduced at x — a1,,,1. The point matrix corresponding to

this force is
-

1 0 0 0 0
0 1 0 0 0

O o 1 0 0 (26)

0 0 0 1 W~_,(t)

0 0 0 0 1

From the condition y1 — cS1(t~) at t oAt , x — a1 and the predetermined

field transfer matrix between a.1 1 and a1, the unknown force W~_1(t)

can be determined as

11.9
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6i(t0
) = Yj_ i(t0) ~~ + 0~_1 (t0) U~0 + Mj_i (t ) UyM + Vi-i( t ) UyV

(27)
+ Wi-i(t0) Uyv +

where Un,, U~0~ UyM~ ~~ and U
YF are the first row elements of the field

transfer matrix and y1,.,1, ~~~~ M1 1  and V~~1 are the state variables at

x — a 1,,1. Equation (27) then yields for  the unknown force

W1_1 (t0) = —y1 1
( t )  ~3X~ —Oi ,(t) ~ 

—M1_1 (t0) ~~~
yV yV yV (28)

—vi_1 + 
~yV

The point matrix to transfer across x = a~~,1 is found from equation (28)

as

‘ 1 0 0 0 0

O 1 0 0 0

O 0 1 0 0 (29)

-U~~/U~~ ~U~,0/U~~ -U~~/U~~ 0 (6i(tn
)_U

yF)/UyV

o o o 0 1

This point matrix can be used to evaluate the matrices Es], [pJ, [T]

and [ Q]  for the Riccati transfer matrix method.

The investigation just completed is sufficient to f ind the unknown

force corresponding to an applied displacement using the condition at the

next in—span or prescribed time dependent displacement position. This

procedure can be applied until the last station is reached. However,

the N/2 known state variables at the right hand boundary are not enough

to determine the remaining N/2 unknown state variables because one of

the homogeneous boundary conditions was used to determine the point matrix

for the preceeding in—span condition or prescribed time dependent dis-

placement. The unused condition at the first (counting along the “~ember

11.10 
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from left to right) prescribed time dependent displacement can re-

place this used boundary condition by being available for fixing the

remaining unknowns. For example, let I denote the station of the

first prescribed time dependent displacement and assume the displace-

ment is contained in the state variable E fi  then, by equations (15) and

(18)

~ ~~m 
E S] [e] + D]m (30)

Ee]m..,, -[TJ [eJ +[QJ (31)

[e31~1 [TJj+2[e]j+2 +[QJ1~2 (32)

~ e]~ ‘ ET 11~ 1 [eJ 1~ 1 +[Q]i+, (33)

[f]1, E SJ j Ee]i + [ P~~ (34)

By sucessive substitution of equations (31), (32), (33) and (34), the

following relationship between [f]1 and [e] is obtained.

[f]1 ~ [SJ e] +EP] (35)

where Es] Es]~ [T]1+1 ET]~+2 — — — CT]

and [pJ — [s]~ [T]1~1 [T]~÷2 — — — t
~

1m +

+[s]~~[T]1~, ~~
ji+2 +[sJ1EQ]~~, + [ ~~] ~

The prescribed time dependent displacement of equation (35) and the

unused homogeneous right hand boundary cc,ndition of equation (30) give

two necessary equations for the two unknown right hand boundary conditions .

Once the boundary conditions are evaluated, the Riccati transfer matrix

can be applied.

STABILITY AND ERROR ANALYSIS

Now that the formulation of the CSDT Riccati transfer matrix method

using the general multistep method has been presented , it is of interest

to ascertain the values for p and the coefficients in equations (2) and

11.11
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(3) to be used. Usually, it is desirable to make p large so that the

truncation error can be reduced [19]. However , in structural dynamics

problems wherein oscillatory functions dominate, it is not clear that

the truncation error should be used as a measure of total accuracy of

the method [20]. Some other factors such as the amplitude decay , period

elongation and effects of spurious roots (for p > 2) could also be

considered as primary accuracy measures. The stability and accuracy

analysis of some of the commonly used direct integration schemes in

linear structural dynamics based or. the finite element model of the

equations of motion have been studied by several authors [14,21,22 ,23 ,24]

For our formulation, several techniques including the central

difference method, the Houbolt method, the Newmark method and the Wilson

~ method, have been studied for time discretization and it is found that

Neiimark’s generalized acceleration method with the following relations

gives the most satisfactory results

- y~ + At + (½ — ~)At
2 
y + ~ At 2 

~~~~ 
(36)

- 

~
‘n + (1 — y )A t y + y At (37)

The trtv~cation error of this formulation is At2 and no spurious roots

are involved. Consider the analysis of a simple bar with the governing

partial differential equation

2 a 2v (38)

where a — ~/EA/m, E is the modulus of elasticity, m and A are the density

and cross—sectional area of the bar ,respectively and x is in the direc-

tion of the bar axis.
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Let equation (38) be multiplied by (½ — 8)At2 at t ime nAt and by

~At 2 at time (n+l)At. The following equation is obtained by adding these

two expressions and using equations (36) and (37)

Ba
2At

2 ~ + (½ - 2~ + y)a2At2 a
,~ + (½ - i +~)a2L~t

2 
~~~~~~

(39 )
- - 2-” + y‘n+I ‘n n-i

The stability of equation (39) can be investigated using von Newmann’s

stability criteria [ 25]. Assume

...fl iflxy 1e  . (40)

where T is a function of time only. Substitute equation (40) into equation

(39) and solve the resulting relationship for T. Then , two solution s

are obtained

T 2 (41)1, 2(1-I-8B2)

where 1) — C Q~—2 B+y) 2 
— 48 (½—Y+8) ]B

4 
— 4B2

2 2 2  2and B — fl a At

For stability, it is necessary to have

D < 0 (42)

Before drawing conclusions from equation (42), consIder the erro r

associated with solution (40) by assuming that condition (42) is satisfied.

Note that

y — et?1~~.tat) 
~43)

is the exact solution of the governing equation of motion (38) . The

accuracy of the method can be evaluated by comparing equation (40) with

equation (43) and rewriting equation (40) in the form

y — coa’~8e ifl(x ± ~a nAt) (44)

where 8, ~ and i .’ can be evaluated using

cos e — ~ 
(2—xB )

2 + 4 CT+X+8)B2 — x2_4~ nB4
~~

2(1+882)

--—-~~
-,,.

~~~~~~~~~ ‘—-.~~~~~~-- U.~~.. - ~~~~~~~~~



— tan ” 
E4(y+x+~)B2 — (X2_48Y)B4~~

2—XB
2

~aAt

a n d X- ½ -28+y ; Y~~ ½-’r+8

From equations (43) and (44), we can see that these two solutions will be

identical to each other if the value of cos 0 and ~ are equal to 1.

If we set cos 0 — 1, then

(½—Y)(8B
2+1)B2 — 0 (45)

This equation is satisfied if we set y—½ , i.e. there is no amplitude

decay error associated with the method if y”½. Now, return to equation

(42). With y—½, equation (42) gives

D — (1—4$)B
4 

— 4B2

In order to have D < 0 for arbitrary values of B, we must have 8 > ¼~

i.e. the method will be unconditionally stable if we choose 8 > ¼.

With y—½ and small At , the parameter 
~4.
’ can be expressed as

~ ~~~~~~~~~~~~~~~~~ - ~
2a2At 2 [/4- ( 1_48)~

4a4At 4 i
3 

+ - - (47)

2—(1—28)n
2a2At

2 L 2—(1—28)n a At J
which in no case will be equal to 1. Thus, the method has a period

elongation error which is a function of the time step used.

The stability and error analysis for a simple Euler—Bernoulli beam

can be carried out in the same fashion since the governing equation of

motion for the beam has the same form as equation (38) except that there

are fourth order derivatives in x and EA is replaced by El. As a consequence,

all in the analysis should be changed to r,1 . However, the conclusion

is the same, i.e. the method is unconditionally stable with 8 ~ ¼ and

11.14
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has no amplitude decay error if y— ½. Also there is an error in the

period elongation which is a function of At.

The foregoing stability and error analysis was based on systems

with no damping. For the case of non—zero damping, the stability and

error analysis would have to include the damping coefficient as an add-

itional variable. Usually, however , small values of the damping coefficient

do not change the overall stability characteristics of an Integration

scheme [3].

It is of interest to note that if we choose the parameters to be

8 1  and y—3/2, the Newmark formulation equation (39) is identical

to the central difference formulation. We can conclude from the analysis

of this section that the central difference formulation used by all of the

previous works on continuous—space discrete—time method is unconditionally

stable but has amplitude decay and period elongation errors. These errors

can be investigated by setting 8—1 and y ’3/2 in equation (44)which give,

for small L~.t,

cos~o — e 
2a2At 2 /2 + 0(At 4) (48)

and ~p — 1 — r~
2a2At2/3 + O(At 4) (49)

Thus , we can see that the central difference formulation of the continuous—

space discrete—time method has amplitude decay error approximately equal
— 2a2At2/2 2 2 2

~o e and the period is increased in the ratio 1/~ — 1+T1 a At /3.

NUMERICAL EXA}IPLES

In using the direct integration method, the most difficult decision

is to select an appropriate time step At. On one hand , the time step must

be small enough to obtain an accurate solution. On the other hand , the

time step must not be smaller than necessary in order to reduce the computa—
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tion cost. Usually [3], a time step smaller than O.O1T is suggested

for the commonly used unconditionally stable direct integration methods

where T is the period of the response.~ Judging from the numerical results

of the examples in this section, a larger time step could be used without losing

accuracy for the present method. However , in using the Riccati transfer matr ix

method it is helpful if the length of each section is chosen to be small

enough such that all the terms for any element in the transfer matrix are

the same order of magnitude [1]. Hence, the section length for the space

computations should depend on the time step chosen for the problem in

order to satisfy the above criterion.

It is difficult to compare the efficiency of the present method to

the other direct integration methods based on finite element models.

The present method is especially appropriate for structural members. The

cost of the present method in carrying the solution forward one time step

could be estimated roughl y from Ref. 1 which shows that the use of the

Riccati transfer matrix method to transfer from one station to an adjacent

station requires N
312 

+ 4 (N/2) 2 multiplications, where N is the order of

the transfer matrix for the structural member.

Extension bar

Consider the displacement at the tip of a cantilevered elastic bar

subjected to a suddenly applied concentrated loading at the free end. The

problem parameters are shown in Fig . 3.

The governing equation of motion for this, problem is the wave

equation

ax2 a2 at 2 (50)

where a ~~/EA/m is the wave propagation velocity. Let us assume that the
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bar is i~iitial1y at rest, i.e.

y (x,O) — 0 ; 3y(x ,t) 
t—0 — 0 (51)

To solve this problem using the CSDT Riccati transfer matrix

method , replace the governing equation of motion (50) at time (n+1)’At by the

following equation, in which we have employed equation (36)

2
d 
~~~~ — 

$a2At2 — R(x) ; n0 ,1,2, ———— (52)

_ _ _ _ _  _ _ _ _ _  
1 1where R(x) — — 2 2 — 

2 
— 

2 ~~~ 
—

8a At 8a At a

Equation (52) has the same form as a bar with an elastic foundation whose

transfer matrix is [26J

[
~1 — 

rcoshc~ 
sinhcU/EA 1 P’lL~Ji+i L~ 

sinh cz2. cosh cL 2.. I ~~
where a2 — 1/8a

2
At
2 and 9. is the section length between station I and

1+1. With a fixed left end boundary condition, the submatrices necessary

to perform the Riccati transfer matrix method are

Ef] y ; [e] P

[U 11] — coshat ; [u 1~] ginh cz9./EA ct

(54)
Cu21] — EAa sinh aL ; Cu22] — cash ct2.

£

[F f ] — — R(x) sinhcz (~. —x) /c*dx ; E F J  - -

As mentioned earlier, 8 > ¼ should be used in the calculation. In

order to choose a proper value for 8 and to see more clearly the error

involved in the present formulation, suppose the bar is one section long.

The displacement at the tip of the bar for the first time step would be

11.17
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— 
BPpa~tsinhctL (55)
EAcoshaL

The exact solution for the problem is [27 J

y iui Po~&t f o r t < ~~~ (56)

By comparing equatIons (55) and (56), we can see that the best

choice for th€ value of 8 is 1 and in this case the error term due

to the discrete—time process is sinhctL/coshcxL. This term will approach

unity as a -
~~ ~~, i.e. At 0.

The exact and computed results (with 8—1) for the displacement

at the tip of the bar are shown in Fig. 4. Several values of 8 were

tried and the solution does not show much sensitivity. Although the

present method was proved to be unconditionally stable, the selection

of At used in performing the integration determines the accuracy of the

method. Here, the accuracy calculations were made for different

values of At and are displayed in Fig. 5. These solutions indicate that

At = O.025T gives satisfactory results.

This same problem is also solved with damping coefficient C — 10 lb—sec/in

in order to see the effect of viscous damping in the application

of the CSDT Riccati transfer matrix method. Figure 6 shows the results

of the present method and the exact solution found using integral

transforms.

Euler—Bernoulli beam with simple supports

A uniform Euler—Bernoulli beam hinged at both ends with a

bending moment applied at the end x—L as shown in Fig. 7 is

analyzed by the present method. Numerical and exact C 27] results for
the displacement at the middle of the beam are shown in Fig. 8 where zero

initial conditions are assumed. The numerical results match very well

with the exact solution even when the time step O.025T is used.
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The accuracy of the present method as a function of At for this

problem is illustrated numerically in Fig. 9.

In order to see the effect of amplitude decay error in u8ing the

central difference formulation for the present method, this example

problem was also solved by setting 8-1 and y ”3I2 . These results are

shown in Fig. 8. Hartree [4] proposed the use of the h2 extrapolation

process to improve the accuracy of the central difference formulation of the

CSDT method. This process was applied and the improvement to the central

difference formulation is illustrated in Fig. 8.

Cantilevered Euler—Bernoulli beam

This example is taken from Ref. 28 where the Newmark method was

applied. The problem considered was an elastic cantilever beam subjected

to a suddenly applied concentrated loading at the free end. The parameters

and the finite element idealization of the beam used in Ref.28 are shown

in Fig. 10. The numerical results for the displacement at the tip of the

beam by the present method and the results by the Newmark method [28]

are shown in Fig. 11.

An integration time step of 1x10 6 
seconds was used in Ref. 26.

The solution became unstable if the time step increased to

lxlO 5 
seconds. In the present method, the beam was divided into ten

sections and a time step of 1x10 4 seconds could be satisfactorily used.

This is about 100 times larger than the value employed in Ref. 28’ .

The same type of problem has also been solved in Ref. 29 us ing the

Wilson 0 method with the following parameters : E — 3xlO 7psi; m — 0.000733

ibm/in; L — 120 in, I — 3 in4. Figure 12 shows the normalized displacement

at the tip of the beam.
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Timoshenko beam with concentrated loading

Davids [30] solved a cantilever Timoshenko beam by using the so—

called direct analysis method. The parameters for the beam given in

Ref. 3O are: E — 3xlO7psi; v — 0.3; y — ~g — 0.3 lb/in3; A — u n 2;

A5 — O.833in2; and I
T/I — 1, where I is the transverse moment of inertia

and 1
T 
is the rotary moment of inertia. Note that for the Titnoshenko

beam, the time derivative appears in both the mass inertia term and the

rotary inertia term and hence, the finite difference formulation equations

(36) and (37), have to be applied to both terms. The resulting equations

have the same form as for the static response of a beam with equivalent

extension and rotary foundations subjected to generalized external moments

and forces. The general forms of the transfer matrix for such a beam

can be obtained from Ref. 26.

The numerical results from Ref. 30 and the present method with ramped

shear and moment acting on the free end of the beam are shown in Figs. 13

and 14 respectively. Only the ratio of the transverse moment of inertia to

the rotary moment of inertia was given in Ref. 30. No values were indicated.

A one inch square beam was selected for our calculations and hence I — 1
T 

—

0.0833in4. The time step of At a io 6 seconds was chosen. In the direct

analysis method, the time step is determined from At — t~x/C where C

is the dilatational wave velocity for the problem under consideration. The

section length Ax is arbitrary and is varied until any reduction in this

quantity will not yield any significant change in th. resulting solution

of the problem. For the parameters given In this example problem C — 1.968x105

in/sec. and hence if 30 sections are used as is the case with the present

method, the time step will be 2.54x10 7 seconds which is much smaller than

the time step used by the present method.
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Beams with distributed loading

The dynamic response of a cantilevered rectangular beam subjected

to a uniform distributed ramp pressure over its length was analyzed by the

general purpose finite element program MARC ( 31 1.The pressure load

is ramped in the first increment to —655.65 psi and then brought down

with constant slope to zero at time .01 seconds. The model with essential

parameters is shown in Fig. 15. The beam was modeled with three two—

dimensional, rectangular section beam column elements in MARC. Three

different methods of analysis were employed . They are the Newmark method ,

the Houbolt method and the method of modal superposition. The displace-

ment at the free end of the beam is shown in Fig. 16. This problem was

also solved by MARC using the Timoshenko beam element which allows

transverse shear as well as axial straining. The results from Newmark

and modal superposition methods are shown in Fig. 17.

This problem is solved by the present method with a lumped mass

model. The mass of the beam is lumped at points 2,3 and 4. The point

matrix for a concentrated mass with the effect of rotary inertia is

1 0 0 0 0

O 1 0 0 0

Eu]1 — 0 0 1 0 (57)

O 0 0 1 PAYU+i

O 0 0 0 1

When Newmark~s formulation equation (36) is used , equation (57) can be written as

—; 0 0 0

3 1 0 0 0

[U] 1 — 0 QI
T/8At 1 0 F~~ (58)

pA/~At
2 0 0 1 Fyi

0 0 0 0 1
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where FMI.
=_PI

T(en+Aten+
(½_8)At 2en) /8At

2

and F~~ 
_
pA (y~+Aty~+(½_B)At2y~)/8At

2

The field matix for the massless beam with the effect of shear deforma-

tion is

1 —L —L2/2EI —9.3/6EI+9./GA F

0 1 9./El 9.2/2EI F0
Eu] — 

(59)
2 0 0 1 9. FM

O 0 0 1 Fv

o 0 0 0 1

where the loading function F
y~ 

F0, FM 
and F

~ 
are

F8 —p(t)13/6EI, F
H 

—p(t)L
2/2 , F

~ 
—p (t)9.

The solution is carried out first for the Euler—Bernoulli beam with

transfer matrices (58) and (59) by setting 1T 
— 1/GA5 — 0. The result

is shown in Fig. 16. The solution for the Timoshenko beam is also

calculated with the results shown in Fig. 17.

Elastic—~ lastic material

Consider a cantilevered bar with an elastic—plastic material and a

constant step velocity of 100 in/sec suddenly imposed on the free end . This

problem has been solved in Ref. 28 using the Newmark method with a

finite element model of the bar. The parameters used in Ref. 28 and the

elastic—plastic model for the materials together with the finite element

model are shown in Fig. 18.

The problem is solved first for the elastic wave propagation. The

results for the velocity and stress of the bar obtained from Ref. 28 and

the present method are shown in Fig. 19. The plastic wave propagation
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problem is then solved using the elastic—plastic model shown in Fig. 18.

The results from Ref. 28 and the present method with 8—1 are shown in

Fig. 20.

A possible formulation for the application of the CSDT Riccati

transfer matrix method to non—linear structural members is proposed

in Ref. 32. Both material and geometric nonlinearities are considered

and usually an iteration process would be needed. However, for this

problem , advantage can be taken of the fact that the general stress—

strain curve in the elastic—plastic model is composed of two straight

lines and, hence, the solution can be carried out by using the elastic

modulus E to form the necessary transfer matrix if the calculated

stress on a particular section of the bar Is less than the yield

stress o . When the calculated stress exceeds a , the transfer matrixy y

is re—computed based on the plastic modulus E~ .

11.23
- - ,- -—  “ —  --- —a- —-~~~. ‘~~~ - - —-.- . - —St — -r



CONCLUSIONS

The usual approach to transient structural” dynamics is based on

continuous time, discrete space ordinary differential equations.

Here we propose a discrete—time, continuous—space approach, with the

Riccati transformation used to stabilize the spatial computations

for structural members.

The generalized Newmark acceleration formulation has been chosen

to approximate the time derivatives in the governing equations of motion.

The resulting method is unconditionally stable and has no amplitude

decay error if the two parameters in the formulation are chosen as

y—½ and 8>¼. The method, however, has period elongation error proportional

to the time step used in the integration. Selection of the proper

integration time step is always a problem in the use of a direct

integration method. Although most of the commonly used methods are un-

conditionally stable, there are amplitude decay and period elongation

errors associated with the use of a large At. Usually, a t ime step

smaller than 0.O1T is suggested for most of the methods where T is the

period of the response. Although the same difficulty is experienced in using

the present method for bar and beam vibration problems it appears as

though a somewhat larger time step can be used with sufficient

accuracy. This conclusion , however, should be scrutinized after this

method is applied to other types of structures.

Numerical examples included bar and beam vibration problems. Although

the gecmetrles and loading conditions were simple, the proposed method ap-

plies to more complicated situations. Due to the generality of the transfer

matrix method, the method of this paper can be applied to structural members

with arbitrary boundary conditions, Inspan supports, and geometric and

material nonuniformit ies .
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Fig. 2 Beam with prescribed time dependent displacements
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x U (&, t) 
P ( t )

L 

~ ~ ‘~ I
• 0.002 lb—..c

2
/in

2; L — lOin; E — 1O7 
lb/in2; A • 1 in2; P — 106

1b0

Fig. 3 Cantilever bar with a concentrated loading at the free end

Exact Solution
Present Method 3—1

(A t — 0.25T)

..~ / \a

C

1 0

~ 2.0

a
U

.~

a
a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

t (a sec)

Fig. 4 Results for the vibration of the cantilever bar of Fig. 3
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Exact Solution __________

Present Method At — 0.025T
___

At — O.05T -—At 0.1T

C-.4

a
‘IC

a
a
-4
a.
a
‘4

0.1 0.2 0.3 0.4 0.5 t (msec)

Fig. 5 Effects of the size of At for the vibration of the cantilever
bar of Fig. 3

Exact Solution

Present Method
1.5 (~~t 7 usec )

1.0
‘4a
‘4a

0.5
a

a

0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 1.0

t (misc)

Fig. 6 Results for the vibration of the cantilever bar of Fig. 3
with viscous dampling included
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11(t)
H ( t)

L 

H0 [
m — 0.002 lb—sec2/in

2
; 1.. — lOin; E — 1O7 lb/ in2; I — lOOm 4; M~ — 1061b— in

Fig. 7 Simply supported beam with a bending moment applied at the end

Exact Solution __________

Present Method (6— 1, ~ t — 0.025 1)— 1/2 — — —
0 015

(Central Difference Method)

(Centr~l Difference Method with
h — extrapolation)

O.OO:

P

~~~~~

J

~~~~~~~~~~~~~~~ 

4

0.05 0.1 0.15 0.2

t (misc)

Fig. 8 Results for vibration of simply supported beam in Fig. 7
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Exact Solution _________
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Present Method ~t—O .025T — — —
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Fig. 9 Effects of the size of At for the vibration of the simply
supported beam in Fig. 7

P(e)

F I I
3 x 1 ” 3” I

t

p — 0.000722 lb—sec2/in4; E — 3x107 lb/in 2 ; I — O.832x10 4 in
4
; A • 0.01151 in

2

Fig. 10 Cantilever beam with a concentrated loading at the free end

11.29

- r-----— —~- —-—— ” -r~~-~~~ 
—

~~~~-—~



Present Method (8 1)

.09 . Newmark Method

.08 .

~~~~.O7 . 
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I:: /
.02 /
.01 

~~~~~~ I I
.1 .2 .3 .4 .5 .6 .7 .8 .9 1. 0 1.1

t (macc)

Fig. 11 Results for the vibration of the cantilever beam of Fig. 10

Modal Solution __________

Wilson 8 Method (8—1.4) - —

Present Method (3 l)
2 - 

~t • 0.004 sec.
U II / \

Ii \ ! / ‘ \‘
1 

1 

~~~

0 0.04 0.08 0.12 0.16 0.20

t(sec)

Fig. 12 Results for the vibration of the cantilever beam in Ref. 29
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Fig. 13 Results for the vibration of a Tlmoshenko beam
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Fig. 14 Results for the vibration of a Timoshenko beam
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72in

(psi)

p • 7.675x1&4 lb—sec 2 /in 4 ; E — 3x107 psi ; A — l4.72in
2 ; v — 0.3

Fig. 15 Cantilever beam with distributed loading
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Fig. 16 Euler—Bernoulli beam results for the vibration of the
cantilever beam of Pig. 15
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.15 - Modal Solution
Neilmark Method

, 
‘
~~ Pr,. ~‘14~ hod — — — —

.1( . I 1 (8—1/4; At — 0.001 sec.)

/
- 

I

‘I \\ t (sac)

- AI I I I

.002 .004 .006 .010 .012 014 016 018

-0.5 . / 
\~ 

.

a ii ii‘4

‘I
C -.10 . \ (7a

1/
a

\ /a ~.
— .20 -

Fig. 17 Timoshenko beam results for the vibration of the cantilever
beam of Fig. 15
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Fig. 18 Cantilever bar with elastic—plastic material
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Fig. 19 Elastic wave solution for the vibration of the elastic—plastic

material bar of Fig. 18
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Pig. 20 Plastic wave solution for the vibration of the eleetic—plastic
material bar of Fig. 18 
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